p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C24⋊7D4, C25⋊1C22, C23.303C24, C24.560C23, C22.1212+ 1+4, C2.6D42, (C2×D4)⋊40D4, C23⋊5(C2×D4), (D4×C23)⋊2C2, C22⋊2C22≀C2, C23⋊2D4⋊3C2, C24⋊3C4⋊10C2, (C23×C4)⋊18C22, (C22×D4)⋊2C22, C2.6(C23⋊3D4), C23.23D4⋊20C2, (C22×C4).785C23, C22.183(C22×D4), C2.C42⋊14C22, (C2×C4)⋊8(C2×D4), (C2×C22≀C2)⋊2C2, C2.10(C2×C22≀C2), (C2×C22⋊C4)⋊8C22, SmallGroup(128,1135)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24⋊7D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=f2=1, ab=ba, faf=ac=ca, ad=da, eae-1=acd, ebe-1=fbf=bc=cb, bd=db, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >
Subgroups: 1780 in 782 conjugacy classes, 140 normal (8 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C22⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C24, C2.C42, C2×C22⋊C4, C22≀C2, C23×C4, C22×D4, C22×D4, C25, C25, C24⋊3C4, C23.23D4, C23⋊2D4, C2×C22≀C2, D4×C23, C24⋊7D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22≀C2, C22×D4, 2+ 1+4, C2×C22≀C2, C23⋊3D4, D42, C24⋊7D4
(1 29)(2 12)(3 31)(4 10)(5 18)(6 23)(7 20)(8 21)(9 16)(11 14)(13 32)(15 30)(17 28)(19 26)(22 25)(24 27)
(1 27)(2 13)(3 25)(4 15)(5 16)(6 28)(7 14)(8 26)(9 18)(10 30)(11 20)(12 32)(17 23)(19 21)(22 31)(24 29)
(1 5)(2 6)(3 7)(4 8)(9 24)(10 21)(11 22)(12 23)(13 28)(14 25)(15 26)(16 27)(17 32)(18 29)(19 30)(20 31)
(1 25)(2 26)(3 27)(4 28)(5 14)(6 15)(7 16)(8 13)(9 20)(10 17)(11 18)(12 19)(21 32)(22 29)(23 30)(24 31)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 2)(3 4)(5 6)(7 8)(9 17)(10 20)(11 19)(12 18)(13 16)(14 15)(21 31)(22 30)(23 29)(24 32)(25 26)(27 28)
G:=sub<Sym(32)| (1,29)(2,12)(3,31)(4,10)(5,18)(6,23)(7,20)(8,21)(9,16)(11,14)(13,32)(15,30)(17,28)(19,26)(22,25)(24,27), (1,27)(2,13)(3,25)(4,15)(5,16)(6,28)(7,14)(8,26)(9,18)(10,30)(11,20)(12,32)(17,23)(19,21)(22,31)(24,29), (1,5)(2,6)(3,7)(4,8)(9,24)(10,21)(11,22)(12,23)(13,28)(14,25)(15,26)(16,27)(17,32)(18,29)(19,30)(20,31), (1,25)(2,26)(3,27)(4,28)(5,14)(6,15)(7,16)(8,13)(9,20)(10,17)(11,18)(12,19)(21,32)(22,29)(23,30)(24,31), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,2)(3,4)(5,6)(7,8)(9,17)(10,20)(11,19)(12,18)(13,16)(14,15)(21,31)(22,30)(23,29)(24,32)(25,26)(27,28)>;
G:=Group( (1,29)(2,12)(3,31)(4,10)(5,18)(6,23)(7,20)(8,21)(9,16)(11,14)(13,32)(15,30)(17,28)(19,26)(22,25)(24,27), (1,27)(2,13)(3,25)(4,15)(5,16)(6,28)(7,14)(8,26)(9,18)(10,30)(11,20)(12,32)(17,23)(19,21)(22,31)(24,29), (1,5)(2,6)(3,7)(4,8)(9,24)(10,21)(11,22)(12,23)(13,28)(14,25)(15,26)(16,27)(17,32)(18,29)(19,30)(20,31), (1,25)(2,26)(3,27)(4,28)(5,14)(6,15)(7,16)(8,13)(9,20)(10,17)(11,18)(12,19)(21,32)(22,29)(23,30)(24,31), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,2)(3,4)(5,6)(7,8)(9,17)(10,20)(11,19)(12,18)(13,16)(14,15)(21,31)(22,30)(23,29)(24,32)(25,26)(27,28) );
G=PermutationGroup([[(1,29),(2,12),(3,31),(4,10),(5,18),(6,23),(7,20),(8,21),(9,16),(11,14),(13,32),(15,30),(17,28),(19,26),(22,25),(24,27)], [(1,27),(2,13),(3,25),(4,15),(5,16),(6,28),(7,14),(8,26),(9,18),(10,30),(11,20),(12,32),(17,23),(19,21),(22,31),(24,29)], [(1,5),(2,6),(3,7),(4,8),(9,24),(10,21),(11,22),(12,23),(13,28),(14,25),(15,26),(16,27),(17,32),(18,29),(19,30),(20,31)], [(1,25),(2,26),(3,27),(4,28),(5,14),(6,15),(7,16),(8,13),(9,20),(10,17),(11,18),(12,19),(21,32),(22,29),(23,30),(24,31)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,2),(3,4),(5,6),(7,8),(9,17),(10,20),(11,19),(12,18),(13,16),(14,15),(21,31),(22,30),(23,29),(24,32),(25,26),(27,28)]])
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 2P | ··· | 2Y | 4A | ··· | 4H | 4I | 4J | 4K | 4L |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | 2+ 1+4 |
kernel | C24⋊7D4 | C24⋊3C4 | C23.23D4 | C23⋊2D4 | C2×C22≀C2 | D4×C23 | C2×D4 | C24 | C22 |
# reps | 1 | 1 | 4 | 4 | 4 | 2 | 16 | 4 | 2 |
Matrix representation of C24⋊7D4 ►in GL6(𝔽5)
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 2 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 3 | 0 | 0 |
0 | 0 | 4 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(5))| [0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,2,2,0,0,0,0,0,0,0,1,0,0,0,0,4,0],[0,4,0,0,0,0,4,0,0,0,0,0,0,0,2,4,0,0,0,0,3,3,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C24⋊7D4 in GAP, Magma, Sage, TeX
C_2^4\rtimes_7D_4
% in TeX
G:=Group("C2^4:7D4");
// GroupNames label
G:=SmallGroup(128,1135);
// by ID
G=gap.SmallGroup(128,1135);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,253,758,723,675]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=f^2=1,a*b=b*a,f*a*f=a*c=c*a,a*d=d*a,e*a*e^-1=a*c*d,e*b*e^-1=f*b*f=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations